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Symbolic dynamics analysis of the Lorenz equations
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Recent progress of symbolic dynamics of one- and especially two-dimensional maps has enabled us to
construct symbolic dynamics for systems of ordinary differential equations~ODEs!. Numerical study under the
guidance of symbolic dynamics is capable of yielding global results on chaotic and periodic regimes in systems
of dissipative ODEs, which cannot be obtained either by purely analytical means or by numerical work alone.
By constructing symbolic dynamics of one- and two-dimensional maps from the Poincare´ sections all unstable
periodic orbits up to a given length at a fixed parameter set may be located and all stable periodic orbits up to
a given length may be found in a wide parameter range. This knowledge, in turn, tells much about the nature
of the chaotic limits. Applied to the Lorenz equations, this approach has made it possible to assign absolute
periods and symbolic names to stable and unstable periodic orbits in this autonomous system. Symmetry
breakings and restorations as well as coexistence of different regimes are also analyzed by using symbolic
dynamics.@S1063-651X~98!13205-1#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Many interesting nonlinear models in physical scienc
and engineering are given by systems of ordinary differen
equations~ODEs!. When studying these systems it is des
able to have a global understanding of the bifurcation a
chaos ‘‘spectrum’’: the systematics of periodic orbits, sta
as well as unstable ones at fixed and varying parameters
types of chaotic attractors that usually occur as limits of
quences of periodic regimes, etc. However, this is by far
a simple job to accomplish either by purely analytical mea
or by numerical work alone. In an analytical aspect, j
recollect the long-standing problem of the number of lim
cycles inplanar systems of ODEs. As chaotic behavior m
appear only in systems of more than three autonom
ODEs, it naturally leads to problems much more formida
than counting the number of limit cycles in planar system
As far as numerical study is concerned, one can neve
confident that all stable periodic orbits up to a certain len
have been found in a given parameter range or no short
stable orbits in a chaotic attractor have been missed at a fi
parameter set, not to mention that it is extremely difficult
draw global conclusions from numerical data alone.

On the other hand, a properly constructed symbolic
namics, being a coarse-grained description, provides a p
erful tool to capture global, topological aspects of the d
namics. This has been convincingly shown in t
development of symbolic dynamics of one-dimensional~1D!
maps, see, e.g.,@1–5#. Since it is well known from numerica
observations that chaotic attractors of many high
dimensional dissipative systems with one positive Lyapun
exponent reveal 1D-like structure in some Poincare´ sections,
it has been suggested to associate the systematics of nu

*On leave from the Institute of Theoretical Physics, P.O. B
2735, Beijing 100080, China.
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cally found periodic orbits in ODEs with symbolic dynamic
of 1D maps@6#. While this approach has had some succ
~see, e.g., Chapter 5 of@4#!, many new questions arose from
the case studies. Some examples are as follows.

~1! The number of stable periodic orbits found in ODEs
usually less than that allowed by the admissibility conditio
of the corresponding 1D symbolic dynamics. Within the 1
framework it is hard to tell whether a missing period w
caused by insufficient numerical search or was forbidden
the dynamics.

~2! In the Poincare´ sections of ODEs, at closer examin
tion, the attractors often reveal two-dimensional featu
such as layers and folds. One has to explain the succes
the 1D description, which sometimes even turns out mu
better than expected. At the same time, the limitation of
1D approach has to be analyzed as the Poincare´ maps are
actually two-dimensional.

~3! Early efforts were more or less concentrated on sta
orbits, while unstable periods play a fundamental role in
ganizing chaotic motion. One has to develop symbolic d
namics for ODEs that would be capable of treating sta
and unstable periodic orbits alike, to indicate the structure
some, if not all, chaotic orbits at a given parameter set.

The elucidation of these problems has to await signific
progress of symbolic dynamics of 2D maps. Now the time
ripe for an in-depth symbolic dynamics analysis of a fe
typical ODEs. This kind of analysis has been carried out
several nonautonomous systems@7–9#, where the strobo-
scopic sampling method@10# greatly simplifies the calcula
tion of Poincare´ maps. In this paper we consider an auton
mous system, namely, the Lorenz model in which one of
first chaotic attractors was discovered@11#.

The Lorenz model consists of three equations

ẋ5s~y2x!, ẏ5rx2y2xy, ż5xy2bx. ~1!

It is known that several hydrodynamical, mechanical, d
5378 © 1998 The American Physical Society
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57 5379SYMBOLIC DYNAMICS ANALYSIS OF THE LORENZ . . .
namo, and laser problems may be reduced to this se
ODEs. The system~1! contains three parametersr , s, andb,
representing respectively the Rayleigh number, the Pra
number, and a geometric ratio. We will study the system i
wide r range at fixeds510 andb58/3.

We put together a few known facts on Eq.~1! to fix the
notation. For detailed derivations one may refer Ref.@12#.
For 0,r ,1 the origin (0,0,0) is a globally stable fixe
point. It loses stability atr 51. A 1D unstable manifold and
a 2D stable manifoldW s come out from the unstable origin
The intersection of the 2DW s with the Poincare´ section will
determine a demarcation line in the partition of the 2D ph
plane of the Poincare´ map. Forr .1 there appears a pair o
fixed points:

C65@6Ab~r 21!,6Ab~r 21!,r 21#.

These two fixed points remain stable untilr reaches 24.74
Their eigenvalues undergo some qualitative changesr
51.345 617 and a strange invariant set~not an attractor yet!
comes into life atr 513.926. It is atr 524.74 where a sub
critical Hopf bifurcation takes place and chaotic regim
commence. Ourr range extends from 28 to very big value
e.g., 10 000, as nothing qualitatively new appears at, sar
.350.

Before undertaking the symbolic dynamics analysis
summarize briefly what has been done on the Lorenz sys
from the viewpoint of symbolic dynamics. Guckenheim
and Williams introduced the geometric Lorenz model@13#
for the vicinity of r 528, which leads to symbolic dynamic
of two letters, proving the existence of chaos in the geom
ric model. However, as Smale@14# pointed out, whether the
geometric Lorenz model means the real Lorenz system
mains an unsolved problem. Though it does not use symb
dynamics at all, the paper by Tomita and Tsuda@15# study-
ing the Lorenz equations at a different set of parameters
516 andb54 is worth mentioning. They noticed that th
quasi-1D chaotic attractor in thez5r 21 Poincare´ section
outlined by the upward intersections of the trajectories m
be directly parametrized by thex coordinates. A 1D map wa
devised in@15# to numerically mimic the global bifurcation
structure of the Lorenz model. Sparrow@12# used two sym-
bolsx andy to encode orbits without explicitly constructin
symbolic dynamics. In Appendix J of@12# Sparrow de-
scribed a family of 1D maps as ‘‘an obvious choice if w
wish to try to model the behavior of the Lorenz equations
the parameter ranges510, b58/3, andr .24.06. In what
follows we will call this family theLorenz-Sparrow map.
References@15# and @12# have been instrumental for th
present study. In fact, the 1D maps to be obtained from
2D upward Poincare´ maps of the Lorenz equations aft
some manipulations belong precisely to the family sugges
by Sparrow. In@16# the systematics of stable periodic orb
in the Lorenz equations was compared with that of a
antisymmetric cubic map. The choice of an antisymme
map was dictated by the invariance of the Lorenz equati
under the discrete transformation

x→2x, y→2y, and z→z. ~2!
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Indeed, most of the periods known to@16# are ordered in a
‘‘cubic’’ way. However, many short periods present in th
1D map have not been found in the Lorenz equations. It w
realized in@17# that a cubic map with a discontinuity in th
center may better reflect the ODEs and many of the miss
periods are excluded by the 2D nature of the Poincare´ map.
Instead of devising model maps one should generate al
lated 1D or 2D maps directly from the Lorenz equations a
construct the corresponding symbolic dynamics. This ma
the main body of the present paper.

For physicists symbolic dynamics is nothing but a coa
grained description of the dynamics. The success of s
bolic dynamics depends on how the coarse graining is p
formed, i.e., on the partition of the phase space. From
practical point of view we can put forward the followin
requirements for a good partition.~1! It should assign a
uniquename to each unstable periodic orbit in the syste
~2! an ordering rule of all symbolic sequences should
defined;~3! admissibility conditions as to whether a give
symbolic sequence is allowed by the dynamics should
formulated; ~4! based on the admissibility conditions an
ordering rule one should be able to generate and locate
periodic orbits, stable and unstable, up to a given leng
Symbolic dynamics of 1D maps has been well understo
@1–5#. Symbolic dynamics of 2D maps has been studies
@18–27#. We will explain the main idea and technique in th
context of the Lorenz equations.

A few words on the research strategy may be in order.
will first calculate the Poincare´ maps in suitably chosen sec
tions. If necessary, some forward contracting foliatio
~FCFs, to be explained later! are superimposed on the Poin
carémap, the attractor being part of the backward contra
ing foliations~BCFs!. Then a one-parameter parametrizati
is introduced for the quasi-1D attractor. For our choice of
Poincare´ sections the parametrization is simply realized
the x coordinates of the points. In terms of these$xi% a first
return mapxn°xn11 is constructed. Using the specific prop
erty of first return maps that the set$xi% remains the same
before and after the mapping, some parts of$xi% may be
safely squeezed and swapped to yield a new mapxn8°xn118 ,
which precisely belongs to the family of Lorenz-Sparro
map. In so doing, all 2D features~layers, folds, etc.! are kept.
However, one can always start from the symbolic dynam
of the 1D Lorenz-Sparrow map to generate a list of allow
periods and then check them against the admissibility co
tions of the 2D symbolic dynamics. Using the ordering
symbolic sequences all allowed periods may be located
ily. This applies to unstable periodic orbits at a fixed para
eter set. The same method can be adapted to treat s
periods either by superimposing the orbital points on
nearby chaotic attractor or by keeping a sufficient numbe
transient points.

II. CONSTRUCTION OF POINCARE´ AND RETURN MAPS

The Poincare´ map in thez5r 21 plane captures most o
the interesting dynamics as it contains both fixed pointsC6 .
The z axis is contained in the stable manifoldW s of the
origin (0,0,0). All orbits reaching thez axis will be attracted
to the origin, thus most of the homoclinic behavior may
tracked in this plane. In principle, either downward or u
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5380 57BAI-LIN HAO, JUN-XIAN LIU, AND WEI-MOU ZHENG
ward intersections of trajectories with thez5r 21 plane may
be used to generate the Poincare´ map. However, upward in
tersections withdz/dt.0 have the practical merit to yield
1D-like objects that may be parametrized by simply us
the x coordinates.

Figure 1 shows a Poincare´ section atr 5118.15. The
dashed curves and diamonds represent one of the FCFs
its tangent points with the BCF. These will be used later
Sec. V. The 1D-like structure of the attractor is appare
Only the thickening in some part of the attractor hints on
2D nature. If we ignore the thickening for the time being, t
1D attractor may be parametrized by thex coordinates only.

FIG. 2. The first return mapxn°xn11 constructed from Fig. 1
by using thex coordinates.

FIG. 1. An upward Poincare´ section atr 5118.15. The dashed
curve is one of the forward contracting foliations and the diamon
tangent point between the FCF and BCF.
g

nd
n
t.
s

Collecting successivexi , we construct a first return ma
xn°xn11 as shown in Fig. 2. It consists of four symmetr
cally located pieces with gaps on the mapping interval. Fo
first return map a gap belonging to bothxn andxn11 plays no
role in the dynamics. If necessary, we can use this specifi
of return maps to squeeze some gaps inx. Furthermore, we
can interchange the left subinterval with the right one
defining, e.g.,

x85x236 for x.0; x85x136 for x,0. ~3!

The precise value of the numerical constant is not essen
it may be estimated from the upper bound of$uxi u% and is so
chosen as to make the final figure look nicer. The swap
first return map, as we call it, is shown in Fig. 3. The cor
sponding tangent points between FCF and BCF~the dia-
monds! are also drawn on these return maps for later use

It is crucial that the parametrization and swapping
keep the 2D features present in the Poincare´ map. This is
important when it comes to take into account the 2D nat
of the Poincare´ maps.

In Fig. 4 Poincare´ maps at 9 different values fromr 528
to 203 are shown. The corresponding swapped return m
are shown in Fig. 5. Generally speaking, asr varies from
small to greater values, these maps undergo transitions f
1D-like to 2D-like, and then to 1D-like again. Even in th
2D-like range the 1D backbones still dominate. This par
explains our early success@16,17# in applying purely 1D
symbolic dynamics to the Lorenz model. We will learn ho
to judge this success later on. Some qualitative change
varying r will be discussed in Sec. III. We note also that t
return map atr 528 complies with what follows from the
geometric Lorenz model. The symbolic dynamics of th
Lorenz-like map has been completely constructed@28#.

FIG. 3. The swapped return mapxn8°xn118 constructed from
Fig. 2. The gaps may be further squeezed, see text.

a
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FIG. 4. Upward Poincare´ maps at 9 differentr values.
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III. SYMBOLIC DYNAMICS OF THE 1D
LORENZ-SPARROW MAP

All the return maps shown in Fig. 5 fit into the family o
Lorenz-Sparrow map. Therefore, we take a general map f
the family and construct the symbolic dynamics. There is
need to have analytical expression for the map. Suffice i
define a map by the shape shown in Fig. 6. This map has
monotone branches, defined on four subintervals labeled
the lettersM , L, N, and R, respectively. We will also use
these same letters to denote the monotone branches t
selves, although we do not have an expression for the m
ping function f (x). Among these branchesR and L are in-
creasing; we sayR and L have an even or1 parity. The
decreasing branchesM and N have odd or2 parity. Be-
tween the monotone branches there are two ‘‘turning poin
~‘‘critical points’’ ! D and C as well as a ‘‘breaking point’’
B, where a discontinuity is present. Any numerical trajecto
m
o
to
ur
by

m-
p-

’’

y

x1x2•••xi••• in this map corresponds to a symbolic s
quence

S5s1s2•••s i•••,

where s iP$M ,L,N,R,C,D,B%, depending on where the
point xi falls in.

Ordering and admissibility of symbolic sequences

All symbolic sequences made of these letters may be
dered in the following way. First, there is the natural orde

N,C,R,B,L,D,M ~4!

on the interval. Next, we compare two symbolic sequen
S1 andS2 with a common leading stringS* , i.e.,

S15S* s•••, S25S* t•••, sÞt.
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FIG. 5. Swapped first return maps obtained from the Poincare´ maps shown in Fig. 4.
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Since s and t are different, they must have been order
according to Eq.~4!. Theordering rule is as follows: ifS is
even, i.e., it contains an even number ofN andM , the order
of S1 andS2 is given by that ofs andt; if S* is odd, the
order is the opposite to that ofs and t. The ordering rule
may be put in the following form:

EN•••,EC•••,ER•••,EB•••,EL•••,ED•••

,EM•••,
~5!

ON•••.OC•••.OR•••.OB•••.OL•••.OD•••

.OM•••,

whereE (O) represents a finite string ofM , L, N, and R
containing aneven~odd! number of lettersM andN. We call
E andO an even and odd string, respectively.
In order to incorporate the discrete symmetry, we defin
transformationT of symbols:

T5$M↔N,L↔R,C↔D%, ~6!

keepingB unchanged. Sometimes we distinguish the left a
right limit of B, then we addB2↔B1 . We often denoteTS
by S̄ and sayS and S̄ are mirror images to each other.

Symbolic sequences that start from the next iterate of
turning or breaking points play a key role in symbolic d
namics. They are calledkneading sequences@3#. Naming a
symbolic sequence by the initial number, which correspo
to its first symbol, we have two kneading sequences from
turning points:

K5 f ~C!, K̄5 f ~D !.
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Since they are mirror images to each other, we takeK as the
independent one.

For first return maps the rightmost point in$xi% equals the
highest point after the mapping. Therefore,f (B2)5H and
f (B1)5H̄, see Fig. 6. We takeH as another kneading se
quence. Note thatB2 andB1 are not necessarily the left an
right limits of the breaking point; a finite gap may exist
between. This is associated with the flexibility of choosi
the shift constant, e.g., the number 36 in Eq.~3!. Since a
kneading sequence starts from the first iterate of a turnin
breaking point, we have

C25NK, C15RK, B25RH,
~7!

B15LH̄, D25LK̄, D15MK̄.

A 1D map with multiple critical points is best param
etrized by its kneading sequences. The dynamical beha
of the Lorenz-Sparrow map is entirely determined by
kneading pair(K,H). Given a kneading pair (K,H), not all
symbolic sequences are allowed in the dynamics. In orde
formulate the admissibility conditions we need a new noti
Take a symbolic sequenceS and inspect its symbols one b
one. Whenever a letterM is encountered, we collect th
subsequent sequence that follows thisM . The set of all such
sequences is denoted byM(S) and is called aM -shift set of
S. Similarly, we defineL(S), R(S), andN(S).

The admissibility conditions, based on the ordering rul
~5!, follow from Eq. ~7!:

H̄<NN~S!<NK, K<R~S!<H,
~8!

H̄<L~S!<K̄, MK̄<MM~S!<H.

Here in the two middle relations we have canceled the le
ing R or L.

The twofold meaning of the admissibility condition
should be emphasized. On one hand, for a given knea
pair these conditions select those symbolic sequences
may occur in the dynamics. On the other hand, a knead
pair (K,H), being symbolic sequences themselves, must
satisfy conditions~8! with S replaced byK and H. Such
(K,H) is called acompatible kneading pair. The first mean-
ing concerns admissible sequences in the phase space
fixed parameter set while the second deals with compat

FIG. 6. A generic Lorenz-Sparrow map. The symbolsM , L, R,
andN label the monotone branches as well as the subintervalsC,

D, andB are turning or breaking points. ForH and H̄ see text.
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kneading pairs in the parameter space. In accordance
these two aspects there are two pieces of work to be d
First, generate all compatible kneading pairs up to a giv
length. This is treated in Appendix A. Second, generate
admissible symbolic sequences up to a certain length fo
given kneading pair (K,H). The procedure is described i
Appendix B.

Metric representation of symbolic sequences

It is convenient to introduce a metric representation
symbolic sequences by associating a real number 0<a(S)
<1 to each sequenceS. To do so let us look at the piecewis
linear map shown in Fig. 7. It is an analog of the surject
tent map in the sense that all symbolic sequences made o
four lettersM , L, R, andN are allowed. It is obvious that the
maximal sequence is (MN)` while the minimal one is
(NM)`. For this map one may further write

C25N~NM!`, C15R~NM!`, B25R~MN!`,

B15L~NM!`, D25L~MN!`, D15M ~MN!`.

To introduce the metric representation we first usee51
to mark the even parity ofL andR, ande521 to mark the
odd parity ofM andN. Next, the numbera(S) is defined for
a sequenceS5s1s2•••si••• as

a5(
i 51

`

m i4
2 i , ~9!

where

m i55
0

1

2

3

for si55
N

R

L

M

if e1e2•••e i 2151,

or,

m i55
3

2

1

0

for si55
N

R

L

M

if e1e2•••e i 21521.

FIG. 7. A piecewise linear map used to introduce metric rep
sentation for the Lorenz-Sparrow map.
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It is easy to check that

a„~NM!`
…50, a~C6!51/4, a~B6!51/2,

a~D6!53/4, a„~MN!`
…51.

The following relations hold for any symbolic sequenceS:

a~S̄!512a~S!, a~LS!5@21a~S!#/4,
~10!

a~RS!5@11a~S!#/4

One may also formulate the admissibility conditions in ter
of the metric representations.

One-parameter limits of the Lorenz-Sparrow map

The family of the Lorenz-Sparrow map includes som
limiting cases.

~1! TheN branch may disappear, and the minimal point
the R branch moves to the left end of the interval. This m
be described as

C5H̄5RK or H5LK̄. ~11!

It defines the only kneading sequenceK from the next iterate
of C.

~2! The minimum atC may rise above the horizontal axi
as is evident in Fig. 5 atr 5203. The second iterate of eithe
the left or right subinterval then is retained in the same s
interval. Consequently, the two kneading sequences are
longer independent and they are bound by the relations

K5LH̄ or K̄5RH. ~12!

Both one parameter limits appear in the Lorenz equati
as we shall see in the next section.

IV. 1D SYMBOLIC DYNAMICS OF THE LORENZ
EQUATIONS

Now we are well prepared to carry out a 1D symbo
dynamics analysis of the Lorenz equations using
swapped return maps shown in Fig. 5. We taker 5118.15 as
a working example. The rightmost point in$xi% and the mini-
mum atC determine the two kneading sequences:

H5MRLNRLRLRLRLNRL•••,

K5RLRLRLRRLRLRLRR•••.

Indeed, they satisfy Eq.~8! and form a compatible kneadin
pair. Using the propositions formulated in Appendix B,
admissible periodic sequences up to period 6 are gener
They are LC, LNLR, LNLRLC, RMRLR, RMLNLC,
RMLN, RLLC, RLLNLC, RLRMLC, andRLRLLC. Here
the letterC is used to denote bothN andR. Therefore, there
are altogether 17 unstable periodic orbits with period eq
to or less than 6. Relying on the ordering of symbolic s
quences and using a bisection method, these unstable
odic orbits may be quickly located in the phase plane.

It should be emphasized that we are dealing with unsta
periodic orbits at a fixed parameter set. There is no s
s
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thing as a superstable periodic sequence or a periodic
dow that would appear when one considers kneading
quences with varying parameters.

Similar analysis may be carried out for otherr . In Table I
we collect some kneading sequences at differentr values.
Their corresponding metric representations are also includ
We first note that they do satisfy the admissibility conditio
~8!, i.e.,K andH at eachr make a compatible kneading pai
An instructive way of presenting the data consists in draw
the plane of metric representation for botha(K) anda(H);
see Fig. 8. The compatibility conditions require, in partic
lar, K<H, therefore only the upper left triangular region
accessible.

As we have indicated at the end of the last section,
Lorenz-Sparrow map has two one-parameter limits. The fi
limit ~11! takes place somewhere atr ,36, maybe around
r 530.1, as estimated by Sparrow@12# in a different context.
In Table I there is only one kneading pairK5R15 and H
5L15, i.e., practicallyK5R` and H5L`, which satisfies
H5LK̄. In terms of the metric representations the conditi
~11! defines a straight line~line a in Fig. 8!

a~H !5@32a~K !#/4.

@We have used Eq.~10!.# The pointr 528 drops down to this
line almost vertically from ther 536 point. This is the region
where ‘‘fully developed chaos’’ has been observed in t
Lorenz model and perhaps it outlines the region where
geometric Lorenz model may apply.

The other limit~12! happens atr .197.6. In Table I all 6
kneading pairs in this range satisfyK5LH̄. They fall on
another straight line~line b in Fig. 8!

a~K !5@32a~H !#/4,

but can hardly be resolved. The valuer 5197.6 manifests
itself as the point where the attractor no longer crosses
horizontal axis. In the 2D Poincare´ map this is where the
chaotic attractor stops to cross the stable manifoldW s of the
origin. The kneading pair atr 5203 is very close to a limit-
ing pair K5LN(LR)` with a precise valuea521/40
50.525 andH5M (RL)` with exacta50.9.

For any kneading pair in Table I one can generate
admissible periods up to length 6 inclusively. For examp
at r 5125 although the swapped return map shown in Fig
exhibits some 2D feature as a few points off the 1D attrac
the 1D Lorenz-Sparrow map still works well. Besides the
orbits listed above forr 5118.15, five new periods appea
LLN, LNLRMR, LNLLC, andRMRLN. All these 22 un-
stable periodic orbits have been located with high precis
in the Lorenz equations. Moreover, if we confine ourselv
to short periods not exceeding period 6, then fromr 528 to
59.40 there are only symbolic sequences made of the
lettersR andL. In particular, Fromr 528 to 50.50 there exis
the same 12 unstable periods:LR, RLR, RLLR, RRLR,
RLRLR, RRLLR, RRRLR, RLRLLR, RRLLLR,
RRLRLR, RRRLLR, and RRRRLR. This may partly ex-
plain the success of the geometric Lorenz model leading
symbolic dynamics on two letters. On the other hand, wher
gets larger, e.g.,r 5136.5, many periodic orbits ‘‘admis
sible’’ to the 1D Lorenz-Sparrow map cannot be found in t
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TABLE I. Kneading pairs (K,H) at differentr values.

r K a(K) H a(H)

203.0 LNLRLRLRLRLRLRL 0.525000 MRLRLRLRLRLRLRL 0.900000
201.0 LNLRLRLRMRLRLRM 0.524995 MRLRLRLNLRLRLNL 0.900018
199.04 LNLRLRMRLRLNLRL 0.524927 MRLRLNLRLRMRLRL 0.900293
198.50 LNLRMRMRLRMRMRL 0.523901 MRLNLNLRLNLNLRL 0.904396
197.65 LNLRMRLRLNLRLRM 0.523827 MRLNLRLRMRLRLNL 0.904692
197.58 LNLRMRRMRMRLRMR 0.523796 MRRMRMRLNLNLRLR 0.908110
196.20 LNLLNLRLNLRLRLN 0.523042 MRRLRLRLRLRLNLR 0.912500
191.0 RMRLNLNLLRLRLRM 0.476096 MNRLRLRMRLRMLNL 0.962518
166.2 RMLNRMLNRMLNRML 0.466667 MNRLNRMRLRLLNRM 0.961450
136.5 RLRMLRRLRMRLLRL 0.403954 MNRRLLNLRRLRMLR 0.959498
125.0 RLRLLNLRLRRLRLL 0.400488 MRRLRMLRLRRLRLL 0.912256
120.0 RLRLRLRLRLRLRML 0.400000 MRRMLRLRLRLRLRR 0.908594
118.15 RLRLRLRRLRLRLRR 0.399988 MRLNRLRLRLRLNRL 0.903906
117.7 RLRLRLNRLLRLRLR 0.399938 MRLRRLRLRLNRLLR 0.900781
107.7 RLRRLLRRLRRLLRR 0.397058 MRLLRRLLRLLNRLR 0.897058
104.2 RLRRLRLRRLRRLRL 0.396872 MRLLRLLRLRRLLNR 0.896826
99.0 RLNRLRRLRRLRRLR 0.384425 MLNRLRRLNRLRRLN 0.865572
93.4 RRMLLNRRMLLNRLL 0.365079 MLRRLLRRRMLRLLR 0.852944
83.5 RRLLRRRLLRRRLLR 0.352884 MLRLLRLRRRLLLRR 0.849233
71.7 RRLRRRLRRRLRRLR 0.349020 MLLRLRRLLRRLLLR 0.837546
65.0 RRRLLRRRRLLRLLR 0.338217 MLLLRRRLRRRLLRL 0.834620
59.4 RRRLRRRRLRRRLLL 0.337243 MLLLRLLRLRRLRLL 0.834326
55.9 RRRRLLRRRRLRLLR 0.334554 MLLLLRRLRRLLLLR 0.833643
50.5 RRRRRLLRRRLRLRL 0.333639 MLLLLLRRLLRRLRR 0.833410
48.3 RRRRRLRRRRRLLLL 0.333578 MLLLLLRLLLLRLLR 0.833394
46.0 RRRRRRLRLRRRRLL 0.333398 MLLLLLLRLRLLLLN 0.833350
36.0 RRRRRRRRRRRRRLR 0.333333 MLLLLLLLLLLLLLR 0.833333
28.0 RRRRRRRRRRRRRRR 0.333333 LLLLLLLLLLLLLLL 0.666667
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original Lorenz equations. This can only be analyzed by
voking 2D symbolic dynamics of the Poincare´ map.

V. SYMBOLIC DYNAMICS OF THE 2D POINCARE ´ MAPS

Essentials of 2D symbolic dynamics

The extension of symbolic dynamics from 1D to 2D ma
is by no means trivial. First of all, the 2D phase plane has
be partitioned in such a way as to meet the requirements
‘‘good’’ partition that we put forward in Sec. I. Next, as 2D
maps are in general invertible, a numerical orbit is enco
into a bi-infinite symbolic sequence

•••sm̄•••s2̄s1̄–s1s2•••sn•••,

where a heavy dot– denotes the ‘‘present,’’ and one iteratio
forward or backward corresponds to a right or left shift of t
present dot. The half-sequence–s1s2•••sn••• is called afor-
ward symbolic sequence and•••sm̄•••s2̄s1̄– a backward
symbolic sequence. One should assign symbols to both
ward and backward sequences in a consistent way by p
tioning the phase plane properly. In the context of the He´non
map Grassberger and Kantz@29# proposed to draw the par
tition line through tangent points between the stable and
stable manifolds of the unstable fixed point in the attrac
Since preimages and images of a tangent point are also
-

o
f a

d

r-
ti-

n-
r.
n-

gent points, it was suggested to take ‘‘primary’’ tangenc
where the sum of curvatures of the two manifolds is minim
@20#.

A natural generalization of the Grassberger-Kantz idea
to use tangencies betweenforward contracting foliations
~FCFs! and backward contracting foliations~BCFs! of the
dynamics to determine the partition line@24#. Points on one
and the same FCF approach each other with the hig
speed under forward iterations of the map. Therefore,
may introduce an equivalence relation: pointsp1 andp2 be-
long to the same FCF if they eventually approach the sa
destination under forward iterations of the map:

p1;p2 if lim
n→`

u f n~p1!2 f n~p2!u50.

The collection of all FCFs forms the forward contractin
manifold of the dynamics. Points in one and the same F
have the same future.

Likewise, points on one and the same BCF approach e
other with the highest speed under backward iterations of
map. One introduces an equivalence relation: pointsp1 and
p2 belong to the same BCF if they eventually approach
same destination under backward iterations of the map:

p1;p2 if lim
n→`

u f 2n~p1!2 f 2n~p2!u50.
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The collection of all BCFs forms the backward contracti
manifold of the dynamics. Points in one and the same B
have the same history. When the phase space is partitio
properly, points in a FCF acquire the same forward symb
sequence while points in a BCF acquire the same backw
symbolic sequence. This has been shown analytically for
Lozi map @24# and Tél map @25#. There has been good nu
merical evidence for the He´non map@19,20,26,27#. We men-
tion in passing that the forward contracting and backw
contracting manifolds contain the stable and unstable m
folds of fixed and periodic points as invariant submanifol

The generalization to use FCFs and BCFs is necessa
least for the following reasons.~1! It is not restricted to the
attractor only. The attractor may experience abrupt chan
but the FCF and BCF change smoothly with parameter. T
is a fact unproven but supported by much numerical e
dence.~2! A good symbolic dynamics assigns unique sy
bolic names to all unstable orbits, not only those located
the attractor. One needs partition lines outside the attracto
well. ~3! Transient processes also take place outside the
tractor. They are part of the dynamics and should be cove
by the same symbolic dynamics.

In practice, contours of BCFs and especially FCFs are
difficult to calculate from the dynamics. This has be
shown for BCFs by Greene@30# and for FCFs by Gu@31#.
Once a mesh of BCFs and FCFs are drawn in the ph
plane, FCFs may be ordered along some BCF andvice versa.
No ambiguity in the ordering occurs as long as no tange
between the two foliations is encountered. A tangency s
nals that one should change to a symbol of a different pa
after crossing a tangency. A tangency in a 2D map play
role similar to a kneading sequence in a 1D map in the se
that it prunes away some inadmissible sequences. As t
are infinitely many tangencies between the FCFs and BC
one may say that there is an infinite number of knead
sequences in a 2D map even at a fixed parameter set. H
ever, as one deals with symbolic sequences of finite len
only a finite number of tangencies will matter.

FIG. 8. Thea(H) vs a(K) plane shows kneading pairs~solid
circles! corresponding to the Lorenz equations fromr 528 to 203.
Only the upper left triangular region is accessible for compati
pairs in the Loren-Sparrow map. The two straight linesa and b
represent the two one-parameter limits of the Lorenz-Sparrow m
F
ed

ic
rd
e

d
i-
.
at

s,
is
i-
-
n
as
t-

ed

ot

se

y
-

ty
a
se
re
s,
g
w-
th

Partitioning of the Poincaré section

Lorenz equations atr 5136.5 provide a typical situation
where 2D symbolic dynamics must be invoked. Figure
shows an upwardz5r 21 Poincare´ section of the chaotic
attractor. The dashed lines indicate the contour of the FC
The two symmetrically located families of FCFs are dem
cated by the intersection of the stable manifoldW s of the
(0,0,0) fixed point with thez5r 21 plane. The actual inter
section located between the dense dashed lines is not sh
The BCFs are not shown either except for the attractor its
which is a part of the BCFs.

The 1D symbolic dynamics analysis performed in Sec.
deals with forward symbolic sequences only. However,
partition of the 1D interval shown in Fig. 3 may be trace
back to the 2D Poincare´ section to indicate the partition fo
assigning symbols to the forward symbolic sequences. T
segments of the partition lines are shown in Fig. 9 as do
lines. The labels–C and –D correspond toC and D in the
Lorenz-Sparrow map, see Fig. 3. The ordering rule~5!
should now be understood as

–EN•••,–EC•••,–ER•••,–EB•••,–EL•••

,–ED•••,–EM•••,

–ON•••.–OC•••.–OR•••.–OB•••.–OL•••

.–OD•••.–OM•••,

with E andO being even and odd strings ofM , L, R, andN.
In fact, from Fig. 3 one could only determine the intersecti
point of the partition line with the 1D-like attractor. To de
termine the partition line in a larger region of the phase pla
one has to locate more tangencies between the FCFs an
BCFs. However, it is more convenient to use another se
tangent points to determine the partition line for backwa
symbolic sequences. To this end 6 tangent points and t

e

p.
FIG. 9. An upward Poincare´ section atr 5136.5 showing the

chaotic attractor, a few FCFs~dashed lines!, and segments of the
partition lines for forward symbolic sequences~dotted lines!.
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mirror images are located and indicated as diamonds in
10. The tangencies in the first quadrant are

~3.833630661151,5.915245399002!,

~13.34721714210,27.06932440906!,

T1 :~16.50130604850,33.81425621518!,

T4 :~21.24012850767,40.56850842796!,

~23.86757424970,58.00925911937!,

~26.73829676387,79.37583837912!.

~We have not labeled the tangent points that are not in
attractor.! The partition linesC– and D– are obtained by
threading through the diamonds. The two partition lines a
the intersection withW s of the origin divide the phase plan
into four regions, marked with the lettersR, N, M , andL.
Among these 6 tangencies onlyT1 andT4 are located on the
attractor. Furthermore, they fall on two different sheets of
attractor, making a 2D analysis necessary.

In order to decide admissibility of sufficiently long sym
bolic sequences more tangencies on the attractor ma
needed. These tangencies are taken across the attracto
example, on the partition lineC– we have

T1 :L`RMC–RRLRLLRLNRLLRLN••• ~13!

~16.501306048503, 33.814256215181!

T2 :R`RMC–RRLLRRLLNRLRMLN•••

~16.567206430154, 34.823691929770!

T3 :R`RLC–RLRMLRRLLNRLRML•••

FIG. 10. The same as Fig. 9 showing 12 tangent points~dia-
monds! and the partition lines for backward symbolic sequen
~dotted lines!.
g.

e

d

e

be
For

~21.246853832518, 40.525036662442!

T4 :L`LLC–RLRMLRRLRMRLLRL•••

~21.240128507672, 40.568508427961!

Due to insufficient numerical resolution in Fig. 10 the di
mond on the main sheet of the attractor representsT3 andT4,
while the diamond on the secondary sheet representsT1 and
T2. The mirror images of these tangencies are located on
D– partition line:

T̄1 :R`LND–LLRLRRLRMLRRLRM•••

T̄2 :L`LND–LLRRLLRRMLRLNRM•••

T̄3 :L`LRD–LRLNRLLRRMLRLNR•••

T̄4 :R`RRD–LRLNRLLRLNLRRLR•••

We denote the symbolic sequence of the tangencyTi as
QiC–Ki , keeping the same letterK as the kneading sequenc
K in the 1D Lorenz-Sparrow map, becauseKi complies with
the definition of a kneading sequence as the next iterate oC.
If one is interested in forward sequences alone, only theseKi
will matter. Moreover, one may press together differe
sheets seen in Fig. 10 along the FCFs, as points on one
the same FCF have the same forward symbolic seque
Here lies a deep reason for the success of 1D symbolic
namics at least when only short periodic orbits are c
cerned. Therefore, before turning to the construction of
symbolic dynamics let us first see what a 1D analysis wo
yield.

1D symbolic analysis atr 5136.5

Figure 11 is a swapped return map obtained from the fi
return map by letting the numerical constant be 41 in Eq.~3!.

s
FIG. 11. The swapped return map atr 5136.5.
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The 2D feature manifests itself as layers nearC andD. The
four tangencies are plotted as two diamonds in the figu
sinceT1 is very close toT2 andT3 to T4. As no layers can be
seen away from the turning points one could only get oneH
from the set$uxi8u%. Now there are 4 kneading sequencesKi

ordered as

K1,K2,K3,K4

according to Eq.~5!. From the admissibility conditions~8! it
follows that if two K2,K1 are both compatible withH,
then any symbolic sequence admissible under (K1 ,H) re-
mains admissible under (K2 ,H) but not the other way
around. In our case, (K4 ,H) puts the most severe restrictio
on admissibility while (K1 ,H) provides the weakest cond
tion. We start with the compatible kneading pair

K15RRLRLLRLNRLLRLN•••,
~14!

H5MNRRLLNLRRLRMLR•••.

We produce all periodic symbolic sequences admissible
der (K1 ,H) up to period 6 using the procedure described
Appendix B. The results are listed in Table II. Only shi
minimal sequences with respect toN andR are given. Their
mirror images, i.e., shift-maximal sequences ending withM
or L, are also admissible. There are in total 46 periods
Table II, where aC stands for bothN andR. The kneading
pair (K2 ,H) forbids 2 from the 46 periods. The two pai
(K3 ,H) and (K4 ,H) lying on the main sheet of the attracto
have the same effect on short periodic orbits. They red
the allowed periods to 20, keeping those fromLC to
RLRMLC in Table II. The actual number of unstable pe
odic orbits up to period 6 may be less than 46, but more t
20. A genuine 2D symbolic dynamics analysis is needed
clarify the situation.

TABLE II. Admissible periodic sequences up to period 6 und
the kneading pair (K1 ,H) at r 5136.5. Only the nonrepeating shif
minimal strings with respect toN or R are given. An asterisk mark
those forbidden by 2D tangencies; see text and Table III.

Period Sequence Period Sequence

2 LC 6 RLRRMR
4 LNLR 3 RLC*
6 LNLRLC 6 RLNRLR*
6 LNLRMR 6 RLNRMR
5 LNLLC 5 RLNLC*
3 RMR 6 RLNLLC*
5 RMRLC 4 RRMR
6 RMLNLC 6 RRMRLC*
4 RMLN 6 RRMRMR
4 RLLC 5 RRMLC*
6 RLLNLC 6 RRMLLN*
6 RLRMLC 6 RRLLLC*
6 RLRLLC* 5 RRLLC*
5 RLRLC* 6 RRLRMC
e,

n-

n

e

n
to

2D symbolic dynamics analysis atr 5136.5

In order to visualize the admissibility conditions impos
by a tangency between FCF and BCF in the 2D phase p
we need metric representations both for the forward a
backward symbolic sequences. The metric representation
the forward sequences remains the same as defined by
~9!.

The partition of phase plane shown in Fig. 10 leads t
different ordering rule for the backward symbolic sequenc
Namely, we have

L,D,M,B,N,C,R,

with the parity of symbols unchanged.~The unchanged par
ity is related to the positiveness of the Jacobian for the flo!
The ordering rule for backward sequences may be written

•••LE–,•••ME–,•••NE–,•••RE–,

•••LO–.•••MO–.•••NO–.•••RO–,

whereE (O) is a finite string containing aneven~odd! num-
ber of M and N. From the ordering rule it follows that the
maximal sequence isR`

– and the minimal isL`
–. To intro-

duce a metric representation for backward symbo
sequences, we associate each backward sequ
•••sm̄•••s2̄s1̄– with a real numberb:

b5(
i 51

`

n ī 4
2 i ,

where

n ī 55
0

1

2

3

for si55
L

M

N

R

and )
j 51

i 21

e j̄ 51,

or

n ī 55
3

2

1

0

for si55
L

M

N

R

and )
j 51

i 21

e j̄ 521.

According to the definition we have

b~L`
–!50, b~D6–!51/4, b~B6–!51/2,

b~C6–!53/4, b~R`
–!51.

In terms of the two metric representations a bi-infin
symbolic sequence with the present dot specified co
sponds to a point in the unit square spanned bya of the
forward sequence andb of the backward sequence. This un
square is called the symbolic plane@19#. In the symbolic
plane forward and backward foliations become vertical a
horizontal lines, respectively. The symbolic plane is an i
age of the whole phase plane under the given dynam
Regions in the phase plane that have one and the same
ward or backward sequence map into a vertical or horizo

r
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line in the symbolic plane. The symbolic plane should not
confused with thea(H);a(K) plane~Fig. 8!, which is the
metric representation of the kneading plane, i.e., the par
eter plane of a 1D map.

As long as foliations are well ordered, a tangency on
partition line puts a restriction on allowed symbolic s
quences. Suppose that there is a tangencyQC–K on the par-
tition line C–. The rectangle enclosed by the linesb(QR–),
b(QN–), a(–K), anda„(NM)`

…50 forms a forbidden zone
~FZ! in the symbolic plane. In the symbolic plane a forbi
den sequence corresponds to a point inside the FZ ofQC–K.
A tangency may define some allowed zones as well. Ho
ever, in order to confirm the admissibility of a sequence
of its shifts must fall in the allowed zones, while one point
the FZ is enough to exclude a sequence. This ‘‘all or non
alternative tells us that it is easier to exclude than to confi
a sequence by a single tangency. Similarly, a tange
Q̄D–K̄ on the partition lineD– determines another FZ, sym
metrically located to the FZ mentioned above. Due to
anti-symmetry of the map one may confine oneself to
first FZ and to shift-minimal sequences ending withN andR
only when dealing with finite periodic sequences. The un
of FZs from all possible tangencies forms a fundamental
bidden zone~FFZ! in the a-b symbolic plane. A necessar
and sufficient condition for a sequence to be allowed cons
in that all of its shifts do not fall in the FFZ. Usually, a finit
number of tangencies may produce a fairly good contou
the FFZ for checking the admissibility of finite sequences.
Fig. 12 we have drawn a symbolic plane with 60 000 poi
representing real orbits generated from the Poincare´ map at
r 5136.5 together with a FFZ outlined by the four tangenc
~13!. The other kneading sequenceH in the 1D Lorenz-
Sparrow map bounds the range of the 1D attractor. In the
Poincare´ map the sequenceH corresponds to the stabl
manifold of the origin, which intersects with the attractor a
bounds the subsequences followingR. In the symbolic plane

FIG. 12. The symbolic plane atr 5136.5. A total of 60 000
points representing real orbits are drawn together with the F
outlined by the 4 tangencies and the forbidden zone caused byH.
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the rectangle formed bya5a(H), a51, b50.5, andb
51 determines the forbidden zone caused byH. It is shown
in Fig. 12 by dashed lines. Indeed, no real orbital points
in the forbidden zones.

In order to check the admissibility of a periodn sequence
one calculatesn points in the symbolic plane by taking th
cyclic shifts of the nonrepeating string. All symbolic s
quences listed in Table II have been checked in this way
20 out of 46 words are forbidden byT3. This means among
the 26 sequences forbidden byK4 in a 1D analysis actually 6
are allowed in 2D. We list all admissible periodic sequenc
of length 6 and less in Table III. The 6 words at the botto
of the table are those forbidden by 1D but allowed in 2D. A
the unstable periodic orbits listed in Table III have been
cated with high precision in the Lorenz equations. T
knowledge of symbolic names and the ordering rule sign
cantly facilitates the numerical work. The coordinates (x,y)
of the first symbol of each sequence are also given in Ta
III.

Chaotic orbits

Symbolic sequences that correspond to chaotic orbits
obey the ordering rule and admissibility conditions. Ho
ever, by the very definition these sequences cannot be
haustively enumerated. Nevertheless, it is possible to s
the existence of some chaotic symbolic sequences in a
structive way.

Z

TABLE III. Location of admissible periodic orbits left from
Table II by 2D analysis. The coordinates (x,y) are those of the first
symbol in a sequence.

Period Sequence x y

2 LR 226.789945953 251.732394996
2 LN 233.741639204 279.398248620
4 LNLR 234.969308137 284.807257714
6 LNLRLN 234.995509382 284.923968314
6 LNLRLR 235.378366481 286.639695512
6 LNLRMR 236.614469777 292.269654794
5 LNLLN 236.694480374 292.638862207
5 LNLLR 237.362562975 295.744924312
3 RMR 36.628892834 92.335783415
5 RMRLN 36.548092868 91.963380870
5 RMRLR 35.927763416 89.123769188
6 RMLNLR 33.541019900 78.514904719
6 RMLNLN 33.465475168 78.187866239
4 RMLN 33.432729468 78.045902429
4 RLLR 29.500017415 61.545331390
4 RLLN 28.800493901 58.709002527
6 RLLNLN 28.566126025 57.759480656
6 RLLNLR 28.548686604 57.682625650
6 RLRMLN 28.310187611 56.723089485
6 RLRMLR 28.299181162 56.676646246
6 RLRRMR 26.376239173 48.942140325
6 RLNRMR 25.282520197 44.566367330
4 RRMR 25.163031306 44.088645613
6 RRMRMR 25.047268287 43.625877472
6 RRLRMN 24.055406683 39.708285078
6 RRLRMR 24.064390385 39.704320864
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We first state a proposition similar to the one mention
in the paragraph before Eq.~V !. If ( K,H2) and (K,H1) are
two compatible kneading pairs withH2,H1 , then all ad-
missible sequences under (K,H2) remain so under (K,H1),
but not the other way around. It is seen from Table I th
from r 5120.0 to 191.0 allK starts withR while the minimal
H starts withMRR. Let K5R••• and H5MRR•••. It is
easy to check that any sequence made of the two segm
LR and LNLR satisfies the admissibility conditions~8!.
Therefore, a random combination of these segments is
admissible sequence in the 1D Lorenz-Sparrow map. A s
lar analysis can be carried out in 2D using the above tang
cies. Any combination of the two segments remains an
missible sequence in 2D. Therefore, we have indicated
structure of a class of chaotic orbits in the parameter ran

VI. STABLE PERIODIC ORBITS IN LORENZ
EQUATIONS

So far we have only considered unstable periodic orbit
fixed r . A good symbolic dynamics should be capable
dealing with stable orbits as well. One can generate all co
patible kneading pairs of the Lorenz-Sparrow map up t
certain length by using the method described in Appendix
Although there is no way to tell the precise parameter wh
a given periodic orbit will become stable, the symbolic s
quence does obey the ordering rule and may be locate
the r axis by using a bisection method. Another way of fin
ing a stable period is to follow the unstable orbit of the sa
name at varying parameters by using a periodic orbit tra
ing program. Anyway, many periodic windows have be
known before or encountered during the present study.
collect them in Tables IV and V@32#. Before making further
remarks on these tables, we indicate how to find symb
sequences for stable periods.

When there exists a periodic window in some parame
range, one cannot extract a return map of the interval fro
small number of orbital points so there may be ambiguity
assigning symbols to numerically determined orbital poin
Nonetheless, there are at least two ways to circumvent
difficulty. First, one can take a nearby parameter where
system exhibits chaotic behavior and superimpose the p
odic points on the chaotic attractor. In most cases the (K,H)
pair calculated from the chaotic attractor may be used
generate unstable periods coexisting with the stable per
Second, one can start with a set of initial points and keep
many as possible transient points before the motion se
down to the final stable periodic regime~a few points near
the randomly chosen initial points have to be dropped a
way!. From the set of transient points one can construct
turn maps as before. Both methods work well for sh
enough periods, especially in narrow windows.

Figure 13 shows a stable period 6 orbitRLRRMRat r
5183.0435 as diamonds. The background figure looks m
like a chaotic attractor, but it is actually a collection of i
own transient points. The last symbolX in RLRRMXcorre-
sponds to a point (20.945699,45.391029) lying to the ri
of a tangency at (20.935971,45.393162). Therefore, it
quires the symbolR, not N. This example shows once mor
how thex parametrization helps in accurate assignment
symbols.
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In a periodically driven system the period of the extern
force serves as a unit to measure other periods in the sys
Therefore, it makes sense to refer to, for instance, a perio
orbit. However, this is not the case in an autonomous sys
like the Lorenz model, since the fundamental frequen
drifts with the varying parameter. A byproduct of the sym
bolic dynamics analysis consists in telling the absolute p
ods of various orbits. It is remarkable that periods assig
in this way coincide with that determined from a calibratio
curve of the fundamental frequency obtained by direct F
rier analysis of numerically observed orbits@33#.

Symmetry breakings and restorations

In a dynamical system with discrete symmetry the ph
nomena of symmetry breaking and symmetry restorat
come into play. In the Lorenz equations periodic orbits a
either symmetric or asymmetric with respect to the transf
mation ~2!; asymmetric orbits appear in symmetrically lo
cated pairs. Some essential features of symmetry brea
and restoration have been known@34#. For example, in many
dissipative systems when studied in the properly chosen
rection of the parameter space symmetry breakings usu
precede period doubling — no symmetric orbits can unde
period doubling directly without the symmetry being brok
first. Furthermore, while symmetry breakings take place
the periodic regime, symmetry restorations occur in the c
otic regime. All these features may be explained by us
symbolic dynamics@35#. Although the analysis performed i
@35# was based on the antisymmetric cubic map, it is ap
cable to the Lorenz equations via the Lorenz-Sparrow m

A doubly ‘‘superstable’’ symmetric orbit must be of th

form SDS̄C, therefore its period is even and only even p
riods of this special form may undergo symmetry breakin
The shortest such orbit isDC. To keep the symmetry when
extending this superstable period into a window, one m
changeD andC in a symmetric fashion, i.e., either replacin
D by M andC by N, or replacingD by L andC by R at the
same time, see Eqs.~4! and ~6!. Thus we get a window
(MN,DC,LR) (MN does not appear in the Lorenz equ
tions while LR persists to very larger ). This is indeed a
symmetric window, as the transformation~6! brings it back
after cyclic permutations. Moreover, this window has a s
nature (1,0,1) according to the parity of the symbols~we
assign a null parity toC and D). It cannot undergo period
doubling as the latter requires a (1,0,2) signature. By con-
tinuity LR extends to an asymmetric window (LR,LC,LN)
with signature (1,0,2) allowing for period doubling. It is
an asymmetric window as its mirror image (RL,RD,RM) is
different. They represent the two symmetrically locat
asymmetric period 2 orbits. The word (LR)` describes both
the second half of the symmetric window and the first half
the asymmetric window. The precise symmetry break
point, however, depends on the mapping function and can
be told by symbolic dynamics.

In general, a wordl` representing the second half of th
symmetric window continues to become the first half of t
asymmetric window (l,tC,r). The latter develops into a
period-doubling cascade described by the general rule
symbolic dynamics. The cascade accumulates and turns
a period-halving cascade of chaotic bands. The whole st
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TABLE IV. Some stable periodic orbits in the Lorenz equations associated with the main sheet
dynamical foliations.

Period Sequence r a

2 DCb 315–10000
2 LN 229.42–314
4c LNLCd 218.3–229.42
8 LNLRLNLC 216.0–218.3
16 LNLRLNLNLNLRLNLC 215.5–216.0
24 LNLRLNLNLNLRLNLRLNLRLNLC 215.07–215.08
12 LNLRLNLNLNLC 213.99–214.06
6 LNLRLC 209.06–209.45
10 LNLRLRLNLC 207.106–207.12
8 LNLRLRLC 205.486–206.528
10 LNLRLRLRLC 204.116–204.123
12 LNLRLRLRLRLC 203.537
14 LNLRLRLRLRLRLC 203.2735
16 LNLRLRLRLRLRLRLC 203.1511
18 LNLRLRLRLRLRLRLRLC 203.093332
30 LNLRLRLRLRLRLRLRLRLRLRLRLRLRLC 203.04120367965
14 LNLRLRDRMRLRLC 200.638–200.665
10 LNLRDRMRLC 198.97–198.99
5 LNLLC 195.576
5 RMRLC 190.80–190.81
7 RMRLRLC 189.559–189.561
9 RMRLRLRLC 188.863–188.865
16 RMRLRLRDLNLRLRLC 187.248–187.25
12 RMRLRDLNLRLC 185.74–185.80
8 RMRDLNLC 181.12–181.65
10 RMRMRMLNLC 178.0745
12 RMRMRDLNLNLC 177.78–177.81
6 RMLNLC 172.758–172.797
16 RMLNRMRDLNRMLNLC 169.902
10 RMLNRMLNLC 168.58
4 RDLC 162.1–166.07
4 RLLC 154.4–162.0
4 RLLN 148.2–154.4
8 RLLNRLLC 147.4–147.8
16 RLLNRLLRRLLNRLLC 147
12 RLLNRLLRRLLC 145.94–146
20 RLLNRLLRRDLRRMLRRLLC 144.35–144.38
12 RLLNRDLRRMLC 143.322–143.442
6 RLLNLC 141.247–141.249
6 RLRMLC 136.800–136.819
10 RLRMLRRLLC 136.210–136.2112
16 RLRMLRRDLRLNRLLC 135.465–135.485
8 RLRDLRLC 132.06–133.2
16 RLRLLRRDLRLRRLLC 129.127–129.148
6 RLRLLC 126.455–126.52
12 RLRLRDLRLRLC 123.56–123.63
8 RLRLRLLC 121.687–121.689
7 RLRLRLC 118.128–118.134
14 RLRLRRDLRLRLLC 116.91–116.925
5 RLRLC 113.916–114.01
10 RLRRDLRLLC 110.57–110.70
9 RLRRLLRLC 108.9778
7 RLRRLLC 107.618–107.625
14 RLRRLRDLRLLRLC 106.746–106.757
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TABLE IV. ~Continued!.

Period Sequence r a

8 RLRRLRLC 104.185
16 RLRRLRRDLRLLRLLC 103.632–103.636
3 RLC 99.79–100.795
6 RLNRLC 99..629–99.78
9 RLNRLRRLC 99.275–99.285
12 RRMLRDLLNRLC 94.542–94.554
6 RRDLLC 92.51–93.20
6 RRLLLC 92.155–92.5
12 RRLLRDLLRRLC 90.163–90.20
8 RRLLRLLC 88.368
7 RRLLRLC 86.402
14 RRLLRRDLLRRLLC 85.986–85.987
8 RRLLRRLC 84.3365
5 RRLLC 83.36–83.39
10 RRLRDLLRLC 82.040–82.095
8 RRLRLLLC 81.317
6 RRLRLC 76.818–76.822
12 RRLRRDLLRLLC 76.310–76.713
8 RRLRRLLC 75.1405
7 RRLRRLC 73.712
14 RRLRRRDLLRLLLC 73.457
4 RRLC 71.452–71.52
8 RRLNRRLC 71.410–71.451
8 RRRDLLLC 69.724–69.839
8 RRRLLRLC 66.2046
9 RRRLLRRLC 65.5025
6 RRRLLC 64.895–64.898
12 RRRLRDLLLRLC 64.572–64.574
7 RRRLRLC 62.069
14 RRRLRRDLLLRLLC 61.928
9 RRRLRRLLC 61.31497
8 RRRLRRLC 60.654
5 RRRLC 59.242–59.255
10 RRRRDLLLLC 58.700–58.715
9 RRRRLLLLC 58.0763
9 RRRRLLRLC 56.53315
7 RRRRLLC 55.787
14 RRRRLRDLLLLRLC 55.675
6 RRRRLC 52.457–52.459
12 RRRRRDLLLLLC 52.245–52.248
8 RRRRRLLC 50.3038–50.3240
7 RRRRRLC 48.1188–48.1194
14 RRRRRRMLLLLLLN 48.027

aThe numbers indicate where the symbolic sequence has been observed. They are not necessarily the
the windows.
bThe lettersD andC are used to indicate a symmetric window.
cThe indented numbers indicate members of a period-doubling cascade.
dThe letterC stands for bothR andN.
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per-
ture is asymmetric. Finally, the chaotic attractor collides w
the symmetric unstable periodic orbitl` and takes back the
symmetry to become a symmetric chaotic attractor. This
symmetry restoration crisis, taking place at the limit d
scribed by the eventually periodic kneading sequencerl`.
In our period 2 example this happens atLN(LR)`. In Table
a
-

IV this limit has been traced byLN(LR)n22LC up ton515.
The only period 30 sequence in Table IV indicates clos
the location of the symmetry restoration point correspond
to the asymmetric period 2n cascade. All other symmetric
orbits in Table IV are put conditionally in the formSDS̄C
as the parameters given can hardly match a doubly su
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TABLE V. Some stable periodic orbits in the Lorenz equations associated with secondary sheets
dynamical foliations~see footnotes in Table IV!.

Period Sequence r

3 RMN 328.0838
3 RMC 327.58–327.88
6 RMRRMC 327.3–327.5
12 RMRRMNRMRRMC 327.26
24 RMRRMNRMRRMRRMRRMNRMRRMC 327.2
10 RMRRDLNLLC 191.982–191.985
20 RMRRMLNLLRRMRRMLNLLC 191.9795
6 RLRRMC 183.0435
12 RLRRMRRLRRMC 183.0434
24 RLRRMRRLRRMNRLRRMRRLRRMC 183.04338
6 RLNRMC 168.2492
12 RLNRMNRLNRMC 168.249189
4 RRMR 162.1381
8 RRMRRRMC 162.13806
16 RRMRRRMNRRMRRRMC 162.13804
6 RRMRMC 157.671066
12 RRMRMNRRMRMC 157.6710656
24 RRMRMNRRMRMRRRMRMNRRMRMC 157.6710654
6 RRLRMC 139.9238433
12 RRLRMRRRLRMC 139.9238430
24 RRLRMRRRLRMNRRLRMRRRLRMC 139.9238428
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stable orbit. For example, the three consecutive perio
from r 5148.2 to 166.07 in Table IV actually mean

~RMLN,RDLC,RLLR!→~RLLR,RLLC,RLLN!,

~1,0,1 !→~1,0,2 !,

followed by an asymmetric period-doubling cascade. T
symmetry restores atRLLN(RLLR)` whose parameter ma
easily be estimated.

FIG. 13. A stable period 6 orbit atr 5183.0435 on the back
ground of its own transient points.
4

e

Symbolic dynamics also yields the number of period
orbits that are capable of undergoing symmetry breaking
the parameter range of the Lorenz equations there are
period 2, one period 4, and two period 6 such orbits, all lis
in Table IV.

‘‘2D’’ orbits and coexisting attractors

Now we return to Tables IV and V. Table IV is a list o
stable periods associated with the main sheet of the dyna
cal foliations. When there is an attracting stable period th
sheets are not readily seen, but they resemble the main s
seen in Fig. 5 or Fig. 11. In fact, one may insert all t
kneading sequencesKi listed in Table I into Table IV ac-
cording to theirr values. They all fit well into the overal
ordering. The ordered list of stable periods plus that
kneading sequenceKi determined from the main sheets
the chaotic attractor makes an analogue of the MSS sequ
@1# in the symbolic dynamics of unimodal maps. It is a su
prising fact the 1D Lorenz-Sparrow map captures so much
the real Lorenz equations. Then where are the manifestly
features? As long as stable periods are concerned, som
bits showing 2D features are collected in Table V. As a ru
they are very narrow windows in the parameter space w
orbits living on some secondary sheets of the dynamical
liations. It is remarkable that they may be named accord
to the same rule of the Lorenz-Sparrow map; they form
different ordered list as compared with Table IV. Amon
them there are a few orbits coexisting with a periodic or
from the main sheet especially when the latter forms a w
window. For instance,RMN andLR coexist in the vicinity
of r 5328.0838. This period 3 orbit develops a perio
doubling cascade, traced to period 24 in Table V. The per
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2 orbit (LR)` may even be seen to coexist with a tiny ch
otic attractor from the same 3n cascade atr 5327.16755.
Other cases, given in Table V, includeRRMR and
RRMRMC as well as their period-doubled regimes, bo
coexisting with the symmetric period 4RLLR below r
5162.1381 and 157.671 066, respectively. In addition, th
are orbits involving both sheets. We attribute all these or
to the manifestation of 2D features.

VII. CONCLUDING REMARK

Fairly detailed global knowledge of the Lorenz equatio
in the phase space as well as in the parameter space has
obtained by numerical work under the guidance of symbo
dynamics. Two-dimensional symbolic dynamics of the Po
carémap may provide, in principle, a complete list of stab
and unstable periodic orbits up to a given length and a pa
description of some chaotic orbits. However, 1D symbo
dynamics extracted from the 2D Poincare´ map is simpler and
instructive. The 2D features seen in the Poincare´ and first
return maps may safely be circumvented by shrinking alo
the FCFs in a 1D study, which deals with forward symbo
sequences only. Whether 1D or 2D symbolic dynamics
needed and how many tangencies to keep in a 2D study
matter of precision. Even in a seemingly ‘‘pure’’ one
dimensional situation 2D features may need to be taken
account when it comes to coping with very long symbo
sequences. This has to be decided in practice. There
what has been described in this paper remains a physic
approach for the time being. However, it may provide fo
for thought to mathematicians. We mention in passing t
there are some technical subtleties in carrying out the p
gram that we could not touch upon due to limited space,
there also has been hope to automate the process an
apply it to more systems of physical importance.

ACKNOWLEDGMENTS

This work was partially supported by the Chinese N
and the Nonlinear Science Project. Discussions with
H.-P. Fang, Dr. Z.-B. Wu, and Dr. F.-G. Xie are gratefu
acknowledged. B.L.H thanks the National Central Univers
in Chung-li, Taiwan, and J.X.L thanks the Center for A
plied Mathematics and Theoretical Physics at the Univer
of Maribor, Slovenia, for their hospitality while the final ve
sion of this paper was written.

APPENDIX A: GENERATION OF COMPATIBLE
KNEADING PAIRS FOR THE LORENZ-SPARROW MAP

We first make a proviso relevant to both Appendices. I
2D setting it is difficult to say that a symbolic sequence
included ‘‘between’’ some other sequences without furth
specifying how the order is defined. In a phase space a n
ber of FCFs may be ordered along a BCF that intersects
some FCFs transversely. In the parameter space of the
renz equations we are working along ther axis and there is a
1D ordering of all symbolic sequences according to
Lorenz-Sparrow map. We hope this is clear from the cont
in what follows.

Two kneading sequencesK andH must satisfy the admis
sibility conditions ~8! in order to become a compatibl
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kneading pair (K,H). This means, in particular, two se
quences withH,K cannot make a compatible pair. More
over, from the admissibility conditions one can deduce t
the minimalH that is compatible with a givenK is deter-
mined by

K<Hmin5max$R~K !,R~K̄ !,N~K !,N~K̄ !%,

whereR(K) is theR-shift set ofK, etc.
According to the ordering rule~5! the greatest sequence

(MN)`, and the smallest (NM)`. A sequenceH5(MN)`

will be compatible with anyK. The admissibility conditions
also require thatK must be shift minimal with respect toR
andN. Both (MN)` and (NM)` meet this requirement. Tak
ing the extreme sequencesK15(MN)`, K25(NM)`, and
H5(MN)`, one can generate all compatible kneading pa
up to a certain length by making use of the following prop
sitions. Denote byS5s0s1•••sn a finite string ofM , L, R,
andN, and assume thatm,nP$M ,L,R,N%, mÞn:

~1! If K15Sm••• and K25Sn••• are both compatible
with a given H, then K5St is also compatible withH,
wheretP$C,B,D% is included betweenm andn, i.e., either
n,t,m or n.t.m holds.

~2! For t5C, under the conditions of 1,K5(St)` is also
compatible withH, wheret stands for eitherR or N.

~3! For t5D, under the conditions of 1,K5(St8S̄t 8̄)` is
compatible withH, wheret8 stands for eitherM or L.

~4! For t5B, under the conditions of 1,K15SRH and
K25SLH̄ are both compatible withH.

Without going into the proofs we continue with the co
struction. By means of the above propositions we have
median wordsK5D,B,C betweenK1 andK2. At this step
we have the following words in ascending order:

~NM!` N`,C,R` R~MN!`,B,L~NM!`

~LR!`,DC,~MN!` ~MN!`.

Inside any group centered atC, B, or D there exists no
median sequence. Furthermore, no median sequence e
between the groupD and (MN)`. By taking any two nearby
different sequences between the groups, the procedure
be continued. For example, betweenR` andR(MN)` we get

R` RR~MN!`, RB, RL~NM!`

~RLLR!`,RDLC,~RMLN!` R~MN!`.

This process is repeated to produce all possibleK up to a
certain length. For eachK one determines aHmin . In this
way we construct the entire kneading plane for the Lore
Sparrow map. Figure 8 shows that only a small part of t
plane is related to the Lorenz equations. This is cau
mainly by the set ofH that may occur in the system.

The above method may be applied to the Lorenz eq
tions to generate and locate median words included betw
two known stable periods. For example, betweenRRRLCat
r 18559.247 andRRRRLLC at r 28555.787 two period 9
words RRRRLLLLCand RRRRLLRLCcan be produced
as follows. At first, taker 1559.40 andr 2555.90 near the
two r 8 values and determine the corresponding maximal
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quencesH from the chaotic attractors as we did above ar
5181.15 or 136.5. They turn out to beH1
5MLLLRLLRL••• for the former and H2
5MLLLLRRLR••• for the latter. Then take their commo
string to be a newH5MLLL. Finally we can useK1
5RRRLC, K25RRRRLLC, andH5MLLL to form com-
patible kneading pairs and to generateRRRRLLLLCand
RRRRLLRLC, which are included in betweenRRRLCand
RRRRLLC. In order to have this procedure working we
the differenceur 12r 2u should be small to guarantee thatH
is long enough to be usable. In addition,r 1 and r 2 should
be chosen close enough tor 18 and r 28 so that Kr 1

5RRRLRRRRLRRRLLL••• at r 1 and Kr 2

5RRRRLLRRRRLRLLR••• at r 2 are very close to
RRRLCandRRRRLLC, respectively.

APPENDIX B: GENERATION OF ADMISSIBLE
SEQUENCES FOR A GIVEN KNEADING PAIR

Given a compatible kneading pair (K,H), one can gener-
ate all admissible periodic symbolic sequences up to a g
length, e.g., 6. Usually, we are interested in having a lis
symbolic names of all short periodic orbits. This can be do
by brute force, i.e., first generate all 64 possible symbolic
sequences then filter them against the admissibility co
tions ~8!. In so doing one should avoid repeated counting
words. Therefore, we always write the basic string of a
riodic sequence in the shift-minimal form with respect toN
or R. The shift-maximal sequences with respect toM or L
may be obtained by applying the symmetry transformationT.

However, one can formulate a few rules to generate o
ry
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the admissible sequences. These rules are based on con
ity in the phase plane. To simplify the writing we introduc
some notation. LetSn5s1s2•••sn be a finite string ofn
symbols; let symbolsm, n, andsi , i 51,2, . . . ,n be all taken
from the set$M ,L,R,N%; and let the symbolt denote one of
$C,B,D%. Recollect, moreover, that at any step of applyi
the rules aC at the end of a string is to be continued asCK,
a D asDK̄, and aB asRH or LH̄, see Eq.~7!.

We have the following propositions:
~1! If both Snm••• and Snn••• are admissible, then

Snt••• is admissible providedt is include betweenm and
n, i.e., eithern,t,m or n.t.m takes place.

~2! If SnB andSnC are admissible then so does (SnR)`.
~3! If SnC and Snm••• are admissible and, in addition

SntK,(Snt)`,Snm•••, where tP$R,N%, then (Snt)` is
admissible.

~4! If Snm•••, SnD andSnn••• are admissible,Snt and
Snw are respectively the greater and the smaller ofSnL and
SnM , then SntK̄,(SntSnw)`,Snm implies the admissi-
bility of ( SntSnw)` or Snn•••,(SnwSnt)`,SnwK̄ im-
plies the admissibility of (SnwSnt)`.

~5! If I 15u1u2•••unB[UB and I 25UR••• are admis-
sible and the leading string ofI 2 turns out to be
u1u2•••ukt with k,n and tP$C,B,D% , then (UR)` is
admissible if it is included betweenI 1 andI 2, otherwise it is
inadmissible. Similarly, IfI 15UB and I 25UL••• are ad-
missible, then (ULŪR)` is admissible if it is included be-
tweenI 1 and I 2, otherwise it is inadmissible.

We omit the proofs@36# of these propositions, which ar
based on continuity in the phase plane and on explicit che
ing of the admissibility conditions~8!.
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